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Abstract: A new definition of covalent bond orders, based on partitioning of the number of electrons within the topological 
theory of atoms in molecules, is proposed. Unlike the previously proposed definitions, it requires neither references to the 
basis sets used in the expansion of the molecular wave function nor a parameterization involving a set of standard bonds. For 
some conjugated molecules, the present approach affords bond orders pertinent to all relevant Lewis (resonance) structures. 
The new definition, which is tested on a set of several organic molecules, provides bond orders that can serve as molecular 
indices complementary to Bader atomic charges. 

Introduction 

The unprecedented progress in computational methods and the 
availability of high-performance hardware paved the way for a 
recent spurt of reliable ab initio quantum-mechanical calculations 
on molecules that were previously not amenable to theoretical 
treatment. Properties of systems involving as many as 120 atoms 
and 1800 basis functions can now be routinely calculated.1 On 
the other hand, development of theoretical tools for interpretation 
of the computed wave functions has lagged considerably behind 
the advances in quantum-chemical methodology, despite the fact 
that our understanding of the electronic structure of molecules 
has been repeatedly demonstrated to benefit substantially from 
the use of such quantities as atomic charges and bond orders. 

The case of bond orders serves as a typical example of how the 
quantities that had been developed in conjunction with the early 
semiempirical methods have never been brought up to the so­
phistication required for interpretation of ab initio wave functions. 
The seminal papers of Coulson2 and Mulliken3 on the ir-electron 
bond orders (also known in the early literature as the "mobile" 
bond orders) proceeded a plethora of definitions of bond orders 
(or indices)4"20 that share the common drawback of relying on 
a partitioning of the Hilbert space spanned by the basis functions 
and therefore explicitly assigning the individual basis functions 
to atoms. Although the sensitivity of so-defined bond orders to 
the choice of the basis functions varies from one approach to 
another, it is obvious that any quantity based on such an explicit 
assignment (which is completely arbitrary) cannot be expected 
to describe the physical reality in an unbiased way. To the best 
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of our knowledge, there have been only two major approaches to 
the problem of bond orders that avoid any reference to the basis 
functions. In particular, Politzer has proposed a definition of bond 
orders21 based on the bond lengths and the bond stretching force 
constants. Although such a definition is for obvious reasons clearly 
preferable to any of the approaches based on a Hilbert space 
partitioning, it is itself not completely free of arbitrariness. The 
ambiguity comes from the fact that the force constants are not 
invariant to the choice of internal coordinates. Thus, different 
choices of the internal coordinates lead to different values of the 
bond order. 

The topological theory of atoms in molecules22 offers a concise 
description of the electronic structure of molecules in terms of 
the topological properties of the electron density. The critical 
points at which the gradient of the electron density vanishes define 
bonds, rings, and cages. The magnitude of the electron density 
at the bond critical point (pcril) serves as a parameter that can 
be used in evaluating the corresponding bond order.23 The 
drawbacks of such an approach stem from the fact that one can 
calculate the bond order only for pairs of atoms connected by bond 
paths and that the correlation between pctit and the bond order 
is purely empirical and therefore involves numerical parameter­
ization. The numerical constants in the formula relating the bond 
order to pcrit depend on the types of atoms involved in the bond 
under consideration and are fitted to reproduce some "standard" 
bond orders (such as one for a single bond in ethane, etc.). One 
faces the problem of selecting a "proper" set of bonds to be used 
in parameterization if bond orders for a variety of different types 
of atomic pairs are to be evaluated. 

Our interest in the development of theoretical tools for inter­
pretation of molecular wave functions resulted in introduction of 
several new indices and orbital transformations that are aimed 
at description of the electronic structure of molecules in intuitive, 
yet well-defined, terms. Particular attention has been paid to 
assure that the proposed definitions do not involve any explicit 
reference to the basis sets and that they are universally applicable 
across the entire spectrum of quantum-chemical methods ranging 
from semiempirical techniques to the electron-correlated ab initio 
calculations. On the basis of these presumptions, a new definition 
of atomic charges has been proposed24 and applied to several 
molecules and ions,25"28 a rigorous definition of molecular similarity 
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has been put forward,29 and a new orbital localization technique 
that allows for localization of both Hartree-Fock and natural 
orbitals has been developed30 together with two forms of orbital 
transformations that aid in the interpretation of electronic excited 
states.31'32 

In this paper, we propose a new definition of the covalent bond 
order, which is developed along the above lines. It does not involve 
either reference to the basis functions or parameterization. 

Theory 

The topological theory of atoms in molecules22 defines atomic 
basins as the regions in Cartesian space that are bordered by 
zero-flux surfaces in the gradient of the electron density. Such 
partitioning allows one to treat the resulting atoms (nuclei together 
with atomic basins) as quantum mechanically separate systems. 
The properties of atoms in molecules are calculated by integration 
over the atomic basins.33 In particular, for an atom (A), the 
corresponding atomic basin (QA), and two spin orbitals (0, and 
4>j), the corresponding element of the atomic overlap matrix 
(AOM) is given by 

(i\i) = Jn «,•(?)*/?) dr (1) 

When the spin orbitals are related to the Hartree-Fock occupied 
spin orbitals through a unitary transformation, the elements of 
AOM satisfy two important conditions: 

£ 0 ' L / > A = <'V> = &v (2) 
A 

and 

WA = £</|/>A (3) 
i 

where NA is the number of electrons of the atom A and 

N = I > A (4) 
A 

is the total number of electrons present in the system under 
consideration. The difference between AA and the atomic number 
of A is known as the Bader atomic charge. 

Taking into account eqs 2-4, one may write 

W=LEI:</ | />A</ | />B (5) 
i A B 

According to eq 5, the total number of electrons can be partitioned 
into atomic and diatomic contributions: 

N=N, + Nd (6) 

where 

W8 = EL«i|/)A)2 (7) 
l A 

and 

/Vd = 2L E 0'|i>A<i|i>B ^ 0 (8) 
i B>A 

Such a partitioning is not invariant to unitary transformations 
among the occupied Hartree-Fock spin orbitals. There are, 
however, minima in /Vd (or the equivalent maxima in N11) with 
respect to the orbital rotations among the occupied spin orbitals. 
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Each of these minima corresponds to a set of localized spin or­
bitals.30 More importantly, if there is a pair of corresponding 
bonding and antibonding spin orbitals present, minimization of 
Ni results in a mutual cancellation of their contributions to Aj. 
This is so because orbital rotations within bonding-antibonding 
spin orbital pairs result in spin orbitals that are localized on single 
atoms. This corresponds to larger values of /Va since such spin 
orbitals have vanishing contributions to N6. In other words, for 
a hypothetical system composed only of noninteracting atoms, one 
would expect iVd = 0. The same would be true for a hypothetical 
molecule with only purely ionic bonds. 

Let us investigate the properties of the above partitioning in 
more detail. The diatomic contribution (7Vd) can be written as 
a sum of bond terms: 

Nj= 22 PAB (9) 
B>A 

where 

PAB = 2 £ < < | I > A W B (10) 
i 

According to eq 10, the contribution to PAB from each doubly 
occupied localized orbital describing a purely covalent bond be­
tween the atoms A and B is equal to 1. The contribution from 
a doubly occupied localized orbital that describes a polarized bond 
is less than 1. The contributions from ionic bonds are equal to 
0. Taking the above observations into account, we conclude that 
^AB (ecl 10), calculated with the localized spin orbitals that 
maximize N11, defines a covalent bond order between the atoms 
A and B in the Lewis (resonance) structure described by this 
particular set of localized spin orbitals. Since the localized spin 
orbitals can have any degree of ionicity, there is usually only one 
maximum in Nv even for molecules that are traditionally described 
by several resonating Lewis structures. For example, there is only 
one maximum for the formate anion (HCOO") corresponding to 
two equivalent localized IT orbitals that describe polarized bonds 
between the carbon atom and the oxygens, although HCOO" is 
often described in terms of two resonance structures involving 
unequivalent C-O bonds. The same is true for the C(CN)3" anion 
(see Examples section), for which there is one maximum in /Va 
despite the commonly used description that uses four resonance 
structures. However, in certain cases (such as, for example, 
benzenoid hydrocarbons), the localized orbitals form patterns that 
have lower symmetry than the corresponding (local) molecular 
symmetry. In such cases, there are multiple maxima in N1, each 
with the corresponding set of localized spin orbitals and covalent 
bond orders. One should note that the localized sets of orbitals 
are just different descriptions of the same wave function and 
therefore do not correspond to the VB structures. Hence, it is 
reasonable to assume that the actual covalent bond orders in the 
real molecules are given by the unweighted averages of PAB o v e r 

all (global and local) maxima in AV 
Summing up, calculation of the covalent bond order involves 

the following steps: (1) finding the extrema of the electron density 
and constructing the atomic boundaries, (2) computing the ele­
ments of the AOM by integrating the orbital products over atomic 
basins (eq 1), (3) finding a unitary transformation among the 
occupied spin orbitals that maximizes N1 (this can be accomplished 
by using a sequence of 2 X 2 Jacobi rotations34 or by employing 
more sophisticated second-order methods35), (4) calculating the 
covalent bond orders (eq 10), with use of the localized orbitals, 
and (5) repeating steps 3 and 4 to find all the maxima in A'a and 
averaging the covalent bond orders over all these maxima. 

To complete this section, three observations about the above 
definition should be added. 

First, our extensive computational testing reveals that, for the 
molecules that are adequately described by just one Lewis 
structure, there is always only one maximum in AV 
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Table I. Covalent Bond Orders in Selected Molecules and Anions 
covalent bond order 

figure 1. The calculated HF/6-31G* (HF/6-31++G** in parentheses) 
covalent bond orders in the benzene molecule: a, one of the two reso­
nance structures; b, the real molecule. 

Second, the definition can be easily generalized to correlated 
wave functions by replacing the Hartree-Fock spin orbitals by 
the natural ones and using the more general equations 

and 

K = EE^«/|()A)2 

/ A 

/>AB = 2L^</ | /)A</| /)B 

(H) 

(12) 

where v, is the occupation number of the /th natural spin orbital, 
in place of eqs 7 and 10. In fact, maximization of so-defined Nt 

has been recently proposed as a means for localizing Hartree-Fock 
as well as natural orbitals.30 To accomplish this, the unitary 
transformations of orbitals have to be replaced by the more general 
isopycnic transformations.30 The contributions to bond orders from 
individual types of orbitals (such as the a- and ir-electron bond 
orders) can be easily calculated by restricting the summation in 
eq 10 (or eq 12) to those orbitals. 

Third, there are some similarities between the present definition 
of the covalent bond order and the bond index of Wiberg.5 Like 
Wiberg's, our derivation of PAB 'S based on partitioning of the 
total number of electrons into atomic and diatomic terms and 
interpreting the latter as bond orders (or indices). The resulting 
PAB'S a r e nonnegative in both definitions. Due to a proper can­
cellation of the contributions from the bonding and antibonding 
orbitals, both indices give the value of 0 for the bond orders 
between noninteracting pairs of atoms, although some misleading 
(and obviously incorrect) criticism concerning this property of 
Wiberg's bond index was published in the chemical literature.16,20 

However, we should emphasize that, unlike Wiberg's, our defi­
nition does not rely on assigning basis functions to individual atoms 
and therefore is equally valid for, for example, numerical orbitals.36 

Examples 

AU the calculations reported in this sections were performed 
at either the HF/6-31G* or the HF/6-31++G** level with the 
HF/6-31G*-optimized geometries. The computations were carried 
out with the GAUSSIAN 88 suite of programs37 running either on 
a VAX 3540 workstation or a CRAY Y-MP supercomputer. The 
AOMs were calculated with the programs EXTREM and PROAIM.33 

The localization of orbitals and evaluation of the covalent bond 
orders were carried out by using a program (BONDER) available 
from J.C. upon request. The calculated bond orders are displayed 
in Table I and Figures 1 and 2. 

First we discuss the trends in the covalent bond orders in selected 
diatomic molecules. The magnitude of />AB for the single bond 
in HF is more than twice that in either LiH or LiF. This is in 
agreement with the degrees of ionicity of these bonds. A similar 
trend is apparent in the isoelectronic series consisting of the N2, 
CN", and CO molecules. One arrives at the value of PAB close 
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Pittsburgh, PA. 

system" 

HF 
LiF 
LiH 
N2 

CN" 
CO 
HCN 

HNC 

H1C1C0H1 

H1Ht1CjCi1H0H1J 

H1H0H0C1C0H1IH0Hf 

CHF3 

CF3" 

bond 

H-F 
Li-F 
Li-H 
N-N 
C-N 
C-O 
H-C 
C-N 
H-N 
H-N 
N-C 
H-C 
H1-C8 

C1-C1, 
H1-C1, 
H1-H1, 
H1-C1 

C1-C1, 
H1-H1, 
C1-H0 

H 1 - H J 
H1-C1 

C1-C0 

H1-H0 

C1-H11 

H-C 
C-F 
H-F 
F-F 
C-F 
F-F 

6-31G* 

0.506 
0.167 
0.207 
3.038 
2.051 
1.509 
0.922 
2.241 
0.073 
0.653 
1.692 
0.021 
0.990 
2.920 
0.050 
0.003 
1.005 
1.958 
0.028 
0.059 
0.005 
0.984 
1.047 
0.035 
0.044 
0.865 
0.570 
0.066 
0.171 
0.598 
0.168 

6 -31++G"* 

0.433 
0.160 
0.210 
3.045 
2.115 
1.524 
0.922 
2.232 
0.089 
0.641 
1.719 
0.023 
1.015 
2.897 
0.061 
0.003 
1.013 
1.918 
0.035 
0.097 
0.010 
0.982 
1.018 
0.044 
0.048 
0.867 
0.572 
0.065 
0.171 
0.617 
0.178 

"Lettered subscripts added wherever necessary to distinguish be­
tween different bonds. 4At the HF/6-31G*-optimized geometries. 

/(0047) I f0 

/ 0 0 4 3 C ^ C ^ 

S » (0.078) > > ^ 

N N 

Figure 2. The calculated HF/6-31G* (HF/6-31+-t-G** in parentheses) 
covalent bond orders: a, the CH(CN)3 molecule; b, the C(CN)3" anion; 
c, the C2(CN)4 molecule. 

to 3 for the triple bond in the nitrogen molecule. This is reduced 
to ca. 2.1 in the CN" ion and to ca. 1.5 in the CO molecule. These 
values, which follow the differences in the electronegativities of 
the atoms involved in bonding, are quite insensitive to the choice 
of the basis set. In the hydrogen cyanide molecule, the calculated 
covalent bond order of the C-N bond is close to that in the cyanide 
anion. The covalent bond order of the C-H is close to 1, due to 
the small difference in the electronegativities of the carbon and 
hydrogen atoms. This is changed radically in the hydrogen iso-
cyanide molecule. Both the N-H and C-N covalent bond orders 
are much smaller than the C-H and C-N ones in the HCN 
molecule. This is not surprising taking into account the increased 
ionicities of the bonds in the HNC molecule. Since both HCN 
and HNC are triatomic molecules, one can also calculate / \ B for 
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the pairs of atoms not directly involving in bonding. As expected, 
these bond orders are quite small. 

The covalent bond orders in the acetylene, ethylene, and ethane 
molecules follow the expectations based on chemical intuition. All 
the C-H bonds have their />AB'S close to 1, whereas the covalent 
bond orders of the bonds between the carbon atoms are close to 
3, 2, and 1, respectively. The bond orders between the nonbonded 
pairs of atoms (including the vicinal hydrogen atoms) are again 
small. 

In the course of bond order calculations reported in this paper, 
we found only one maximum of N^ per molecule, with the obvious 
exception of the benzene molecule. In accordance with the number 
and the character of the Kekule structures, for the benzene 
molecule, we obtained two identical maxima, with the pattern of 
covalent bond orders exhibiting symmetry reduced from Dih to 
mh (Figure 1). The C-C bonds have the bond orders of ca. 1.2 
and 1.6, which averages to ca. 1.4 in the real molecule. The C-H 
bond orders are close to 1 in both the individual resonance 
structures and the molecule itself. 

The CHF3 molecule, in which the C-H covalent bond order 
is considerably smaller than in the unsubstituted hydrocarbons, 
illustrates nicely the influence of substituents on the ionicity of 
adjacent bonds. In the CF3" anion, the C-F covalent bond orders 
are slightly larger than in CHF3. 

Our recent calculations on the CH(CN)3 and C(CN)3" sys­
tems38 confirmed that, in the latter, the electron derealization 
results in stronger C-C bonds and weakened C-N bonds. This 
conclusion has been drawn from the changes in the optimized bond 
lengths and the electron densities at the relevant critical points 
accompanying deprotonation of CH(CN)3. The computed co­
valent bond orders, displayed in Figure 2a,b, provide even more 
a transparent manifestation of this effect. In the CH(CN)3 
molecule, the C-C bond orders have values close to 1, whereas 
the magnitudes of the C-N bond orders are very close to those 
in the HCN molecule. On the other hand, in the C(CN)3" anion, 
the values of P^s increase for the C-C bonds and decrease by 
almost the same amount for the C-N bonds. Quite similar but 
less dramatic changes are observed in the C2(CN)4 (TCNE) 
molecule (Figure 2c) as compared to ethylene. In this case, the 

(38) Cioslowski, J.; Mixon, S. T.; Fleischmann, E. D. /. Am. Chem. Soc., 
in press. 

Introduction 
The reaction of magnesium with fluorocarbons such as tetra-

fluoroethylene (TFE) has received interest due to its pyrotechnic 
applications. Formulations involving Mg dispersed in solid TFE 
burn readily and contain many advantageous characteristics as 

electron-withdrawing CN substituents lower the covalent bond 
order of the central C-C bond considerably. 

Conclusions 
The proposed definition of the covalent bond order has several 

advantages over the previously known ones. 
First, it does not rely on an explicit assignment of the basis 

functions to individual atoms. Numerical values of the computed 
bond orders are quite insensitive to the choice of the basis set, 
provided the particular basis set is capable of providing an accurate 
description of the electron distribution in the molecule in question. 
One should remark that the minimal basis sets (such as STO-3G) 
are usually inadequate for this purpose as reflected by large errors 
in the calculated dipole moments and GAPT charges.24 The 
covalent bond orders are expected to converge smoothly with 
increasing number of basis functions to a limit independent of the 
nature of these functions (multicenter functions, one-center 
functions, bond functions, ghost orbitals, numerical orbitals, etc.). 

Second, the definition follows from a simple partitioning of the 
total number of electrons present in the molecule under consid­
eration. Minimization of the diatomic term leads to localization 
of the spin orbitals. The contribution of each localized spin orbital 
to each atomic pair is then assessed by means of calculating a 
weighted product of the relevant atomic overlap matrix (AOM) 
elements. This yields bond orders for individual Lewis (resonance) 
structures represented by localized spin orbitals. If more than 
one of such structures exist, a simple averaging provides the 
covalent bond orders of the real molecule. 

Such a prescription results in covalent bond orders that are 
physically significant, quite easy to calculate, and transparent to 
interpretation. The presented examples demonstrate that the 
computed bond orders follow the expectations based on chemical 
intuition, reproducing for instance the inductive and resonance 
effects of substituents. The proposed covalent bond orders can 
be therefore used as companion indices to the Bader atomic 
charges. 
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rocket motor igniters and flares.1"5 The mechanism of the 
combustion reaction is not entirely clear,6'7 and attention is being 

(1) Keller, R. B., Ed. Solid Rocket Motor Igniters; NASA SP. 8051, 
March 1971. 

Ab Initio Study of the Insertion Reaction of Mg into the 
Carbon-Halogen Bond of Fluoro- and Chloromethane 
Steven R. Davis 
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Abstract: Theoretical calcuations using self-consistent field (SCF) and Moller-Plessett perturbation theory, up to fourth order 
(MP4), have been carried out on the gas-phase Mg + CH3X -» CH3MgX Grignard reaction surface for X = F and Cl. The 
transition-state energies, geometries, and vibrational frequencies for both reactions are presented and compared to the smaller 
Mg + HX -* HMgX reaction. The transition states for both X = F and X = Cl are found to possess C1 symmetry and to 
be almost identical in structure. The activation energy for the Mg + fluoromethane reaction is found to be 31.2 kcal-mol"', 
while that for the chloromethane reaction is substantially higher, at 39.4 kcal-mol"1, calculated at the MP4SDTQ level by 
using the 6-31 lG(d,p) basis. The intrinsic reaction coordinate has been followed down from the transition state toward both 
reactants and product for the Mg + CH3F — CH3MgF reaction, confirming the connection of these points on the potential 
surface. 
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